

VALIDATION TEST IN ACCORDANCE WITH NFRC 102-2017

CLEB laboratory Inc. Submitted To: Re-issued To:

Aluminco S.A. Tested Report No.: Viotia Inofita NV-02952 Greece,, Re-issued Report No.: 32011

N/A +30 22620 47090

Test Report Summary

General Information: Product description :

Operation type: Frame type: FIXD ΑT Model Sash type: Fixed Window NA Type: **Door Description Production Line** N/A Submitted for: Panel: Initial certification N/A **Product Line ID Number:** Core fill: N/A

Test date Skin: 2017-12-15 N/A Report date 2017-12-19 **Sub-Structure** N/A

Revision date Size in mm: N/A 1200 mm W. x 1500 mm H. Number of pages Size in inch: 47.24" W x 59.06" H.

Us: $1.98 \pm 0.08 \text{ W/(m}^2\text{C}) (0.35 \pm 0.01 \text{ BTU/(hrft}^2\text{°F)})$ Comment:

Ust: $1.94 \pm 0.08 \text{ W/(m}^2\text{C}) (0.34 \pm 0.01 \text{ BTU/(hrft}^2\text{°F)})$

Glazing information

Type: **Double Sealed Unit**

*Spacer type: A1-D

Overall thickness 25.83 mm (1.02") *Filling Technique Single probe *Design Gas Fill: Argon/Air

*Gas concentration: 90% Argon, 10% Air

	Thickness			* Emissivity						
	mm	inch	S1	S2	S3	S4	S5	S6	S7	S8
Glass 1	5.79	0.12	0.840	0.025						
Glass 2	4.89	0.19			0.840	0.840				
Glass 3	N/A	N/A					N/A	N/A		
Glass 4	N/A	N/A							N/A	N/A
Gap 1	15.15	0.60								
Gap 2	N/A	N/A								
Gap 3	N/A	N/A								

Notes: Reference must be made to CLEB laboratory Inc. complete report for test specimen description and details test results.

*: Data obtained by the manufacturer.

Re-issue Information

Model: Date of Re-issue: N/A N/A **Product Line ID**

Reported by:

Submitted For: N/A Number: Revision Date: N/A

Tested by:

Frédéric Curie Frédéric Currier

Technician, Thermal Evaluations

CLEB laboratory Inc.

Dominic Blackburn

Technician, Thermal Evaluations CLEB laboratory Inc.

Det Mc Mah

Approved by:

Dave Deshaies McMahon, P.Eng.

N/A

Person-in-Responsible Charge, Thermal Evaluation

CLEB laboratory Inc.

Montréal

Siège social – Canada 1320 boul. Lionel-Boulet Varennes, Québec J3X 1P7) montreal@cleb.com

Chicago

US Headquarters 750 Anthony Trail Northbrook, IL 60062 chicago@cleb.com

New York

Satellite office 747 Third Avenue, 2nd Floor New York, NY 10017 newvork@cleb.com

Québec

420 boul. Charest Est, suite 300 Québec, Québec G1K 8M4 quebec@cleb.com

Ottawa

29 Capital Drive, suite 200 Ottawa, Ontario K2G 0E7 ottawa@cleb.com

Truro

64 Inglis Place, suite 203 Truro, Nova Scotia B2N 4B4 truro@cleb.com

N/A

TABLE OF CONTENTS

1	INTRODUCTION	1
2	SPECIFICATION	1
3	DESCRIPTION OF THE TESTED SPECIMEN	1
4	SPECIMEN PREPARATION PRIOR TO TEST	5
5	TEST PARAMETERS	5
6	RESULTS	6
7	CALCULATED DATA TEST	7
8	GENERAL COMMENTS	8
9	CONCLUSION	8
10	REVISION LOG	8

APPENDIX A: DRAWINGS AND PRODUCT INFORMATION

1 INTRODUCTION

CLEB laboratory Inc. has been retained by Aluminco S.A. to test a fixed window in accordance with NFRC 102 Procedure for Measuring the Steady-State Thermal Transmittance of Fenestration Systems. The sample components and manufacturing are documented in section 3.0. In this report, all values in parenthesis are for reference only.Ratings included in this report are for submittal to an NFRC-licensed IA for certification purposes and are not meant to be used for labelling purposes. Only those values identified on a valid Certification Authorization Report (CAR) are to be used for labelling purposes.

2 SPECIFICATION

NFRC 102-2017 Procedure for Measuring the Steady-State Thermal Transmittance of Fenestration Systems

3 DESCRIPTION OF THE TESTED SPECIMEN

3.1 OPERATOR TYPE

FIXD, Fixed

3.2 TYPE

Production Line

3.3 MODEL

Fixed Window

3.4 GLAZING DAYLIGHT OPENING

- 3.4.1 Lite 1: 1076 mm W. x 1377 mm H. (42,36" x 54,21")
- 3.4.2 Lite 2: N/A
- 3.4.3 Lite 3: N/A
- 3.4.4 Lite 4: N/A

3.5 DATE OF SAMPLE RECEPTION

2017-11-29

3.6 DATE OF TESTING

2017-12-15

Test Report No: NV-02952, Re-issued Report No: N/A

Validation Test in Accordance with NFRC 102-2017

3.7 FRAME

- 3.7.1 Material: AT, Aluminum w/ Thermal breaks All members
- 3.7.2 Finish: Painted Aluminum
- 3.7.3 Joinery type: Mechanical assembly crimped and sealed
- 3.7.4 Reinforcement:
 - 3.7.4.1 Reinforcement 1: None
 - 3.7.4.2 Reinforcement 2: None
 - 3.7.4.3 Reinforcement 3: None
 - 3.7.4.4 Reinforcement 4: None
 - 3.7.4.5 Reinforcement 5: None
 - 3.7.4.6 Reinforcement 6: None
- 3.7.5 Weatherstripping:
 - 3.7.5.1 Weatherstripping 1: None
 - 3.7.5.2 Weatherstripping 2: None
 - 3.7.5.3 Weatherstripping 3: None
 - 3.7.5.4 Weatherstripping 4: None
 - 3.7.5.5 Weatherstripping 5: None
 - 3.7.5.6 Weatherstripping 6: None
- 3.7.6 Drainage:
 - 3.7.6.1 Drainage 1: 2 Oblong Hole(s) 27 mm x 6 mm
 - 3.7.6.2 Drainage 2: None
 - 3.7.6.3 Drainage 3: None
 - 3.7.6.4 Drainage 4: None
 - 3.7.6.5 Drainage 5: None
 - 3.7.6.6 Drainage 6: None
- 3.7.7 Overall dimensions: 1200 mm W. x 1500 mm H. (47.24" x 59.06")
- 3.8 SASH(ES)
- 3.8.1 Material: NA, Not applicable
- 3.8.2 Finish: Not applicable
- 3.8.3 Joinery type: Not applicable

3.8.4 Reinforcement:

- 3.8.4.1 Reinforcement 1: Not applicable
- 3.8.4.2 Reinforcement 2: Not applicable
- 3.8.4.3 Reinforcement 3: Not applicable
- 3.8.4.4 Reinforcement 4: Not applicable
- 3.8.4.5 Reinforcement 5: Not applicable
- 3.8.4.6 Reinforcement 6: Not applicable

3.8.5 Weatherstripping:

- 3.8.5.1 Weatherstripping 1: Not applicable
- 3.8.5.2 Weatherstripping 2: Not applicable
- 3.8.5.3 Weatherstripping 3: Not applicable
- 3.8.5.4 Weatherstripping 4: Not applicable
- 3.8.5.5 Weatherstripping 5: Not applicable
- 3.8.5.6 Weatherstripping 6: Not applicable

3.8.6 Drainage:Not applicable

- 3.8.6.1 Drainage 1: Not applicable
- 3.8.6.2 Drainage 2: Not applicable
- 3.8.6.3 Drainage 3: Not applicable
- 3.8.6.4 Drainage 4: Not applicable
- 3.8.6.5 Drainage 5: Not applicable
- 3.8.6.6 Drainage 6: Not applicable

3.8.7 Overall dimensions:

- 3.8.7.1 Sash 1:N/A
- 3.8.7.2 Sash 2: N/A
- 3.8.7.3 Sash 3: N/A
- 3.8.7.4 Sash 4: N/A

3.9 DOOR SLAB

- 3.9.1 Description: N/A, N/A
- 3.9.2 Panel: N/A, N/A

3.9.3 Material:

- 3.9.3.1 Core fill: N/A, N/A
- 3.9.3.2 Skin: N/A, N/A
- 3.9.3.3 Sub-structure: N/A, N/A

3.9.4 Lite frame

3.9.4.1 Material: N/A, N/A
3.9.4.2 Joinery type: N/A
3.9.4.3 Weatherstripping: N/A
3.9.4.4 Overall dimensions: N/A

3.9.5 Drainage: N/A

3.10 HARDWARE

3.10.1 Operator: N/A

3.10.2 Lock: N/A

3.10.3 Quantity of Keepers: N/A

3.10.4 Quantity of Hinges: N/A

3.10.5 Quantity of Snubbers: N/A

3.11 GLAZING METHOD

3.11.1 Exterior face: EPDM Gasket

3.11.2 Interior face: EPDM Gasket and Silicone

3.12 SPACER

3.12.1 *Spacer Type: A1-D, Aluminum

3.12.2 *Spacer Name: A1-D

3.12.3 *Primary sealant: Aluminum (Mill Finish)

3.12.4 *Secondary sealant: Hot-Melt Butyl

3.13 GRID

3.13.1 Grid: N, No Grids

3.13.2 Grid type: N/A

3.13.3 Grid size: N/A

Test Report No: NV-02952, Re-issued Report No: N/A

Validation Test in Accordance with NFRC 102-2017

3.14 GLAZING

3.14.1 Type: Double Sealed Unit

3.14.2 Overall thickness: 25.83 mm (1.02")

3.14.3 *Filling Technique: Single probe

3.14.4 *Design Gas Fill: Argon/Air

3.14.5 *Gas Concentration: 90% Argon, 10% Air

3.14.6 Capillary tube: No

GLASS AND CAVITY PROPERTIES

	Thick	ness				*Er	nissivity			
	mm	inch	S 1	S2	S3	S4	S5	S6	S7	S8
Glass 1	5.79	0.23	0.840	0.025						
Glass 2	4.89	0.19			0.840	0.840				
Glass 3	N/A	N/A					N/A	N/A		
Glass 4	N/A	N/A							N/A	N/A
Gap 1	15.15	0.60								
Gap 2	N/A	N/A								
Gap 3	N/A	N/A								

^{*:} Data obtained from the manufacturer

4 SPECIMEN PREPARATION PRIOR TO TEST

The test specimen was preconditioned at ambient laboratory conditions prior to the test. The surround panel-to-specimen interfaces were sealed with a non-reflective tape. The specimen was sealed on the exterior with a non-reflective tape.

5 TEST PARAMETERS

Tests to determine the Standardized Thermal Transmittance (Ust) of the specimen were performed in the guarded hot box located at Varennes, Quebec. The most recent calibration of the hot box apparatus was in 2017-11-15. The thermal performance evaluations were completed in accordance with the NFRC Test Procedure using a dynamic wind perpendicular to the specimen on the weather side and simulated natural convection on the room side. A zero static pressure differential was maintained across the specimen during the test by pressurizing the guard box on the room side. Data was collected over two successive 2 hour periods after 4 hours of steady state conditions as defined in section 5.2.1.A of the NFRC Test Procedure.

Heat Flow vs EMF Equation: Qmb (W) = -1.4 EMF (mV) + -1.5.

6 RESULTS

6.1	MEAS		

6.1.1	Glass Thickness and Glazing Deflection	Metric unit (Imperial unit)
6.1.1.1	Glazing Deflection Before Test:	4.04 mm (0.16 inch)
6.1.1.2	Glazing Deflection During Test:	6.42 mm (0.25 inch)
6.1.2	Heat Flows	
6.1.2.1	Total Measured Input into Metering Box (Q):	187.20 W (639.33 BTU/hr)
6.1.2.2	Surround Panel Heat Flow (Q _{sp}):	46.69 W (159.44 BTU/hr)
6.1.2.3	Metering Box Wall Heat Flow (Qmb):	-1.96 W (-6.68 BTU/hr)
6.1.2.4	Net Specimen Heat Loss (Q _s):	138.56 W (473.21 BTU/hr)
6.1.3	Areas	
6.1.3.1	Test Specimen Projected Area (As):	1,80 m² (19,38 ft²)
6.1.3.2	Test Specimen Interior Total (3-D) Surface Area (A _h):	1,92 m² (20,71 ft²)
6.1.3.3	Test Specimen Exterior Total (3-D) Surface Area (Ac):	1,85 m² (19,93 ft²)
6.1.3.4	Metering Box Opening Area (Amb):	5,95 m² (64,00 ft²)
6.1.3.5	Metering Box Baffle Area (A _{b1}):	5.57 m² (60.00 ft²)
6.1.3.6	Surround Panel Interior Exposed Area (Asp):	4,15 m² (44,62 ft²)
6.1.4	Test Conditions	
6.1.4.1	Average Metering Room Air Temperature (t _h):	20.93 °C (69.67 °F)
6.1.4.2	Average Cold Side Air Temperature (tc):	-17.86 °C (-0.15 °F)
6.1.4.3	Average Guard/Environmental Air Temperature:	22.50 °C (72.50 °F)
6.1.4.4	Metering Room Maximum Relative Humidity:	14 % (14 %)
6.1.4.5	Measured Cold Side Wind Velocity:	6.44 km/h (4.00 mph)
6.1.4.6	Measured Maximum Static Pressure Difference Across Specimen:	0.11Pa (0.00 psf)
6.1.4.7	Surround Panel Thickness	102 mm (4 inches)
6.1.4.8	Surround Panel Conductance (C _{sp})	0,30 W/(m ² C) (0,05 BTU/(hrft ² °F))
6.1.5	Surface Temperature Data	
6.1.5.1	Area-Weighted Surround Panel Warm Side Surface Temperature (t _{sp1}):	20.20 °C (68.37 °F)
6.1.5.2	Area-Weighted Surround Panel Cold Side Surface Temperature	-17.08 °C (1.26 °F)
	$(t_{\rm sp2})$:	
6.1.6 F	Results	
6.1.6.1	Thermal Transmittance of Test Specimen $(U_s)^1$:	1.98 ± 0.08 W/(m ² C) (0.35 ± 0.01
0.4.0.0	Otan dendined Thermal Transmitter (T. 100)	BTU/(hrft ² °F))
6.1.6.2	Standardized Thermal Transmittance of Test Specimen (Ust)	1.94 ± 0.08 W/(m²C) (0.34 ± 0.01 BTU/(hrft²°F))

Test Report No: NV-02952, Re-issued Report No: N/A

Validation Test in Accordance with NFRC 102-2017

7 CALCULATED DATA TEST

7.1.1 N	lethod B (Equivalent CTS Method)	Metric unit	(Imperial unit)	
7.1.1.1	Emittance of Glass (e ₁):	0,84 (0,84)		
7.1.1.2	Warm Side Baffle Emittance (e _{b1}):	0,91 (0,91)		
7.1.1.3	Equivalent Warm Side Surface Temperature (t ₁):	10.79 °C (51	1.42 °F)	
7.1.1.4 Equivalent Weather Side Surface Temperature (t2): -15.23 °C (4.58 °F)				
7.1.1.5	7.1.1.5 Warm Side Baffle Surface Temperature (tb1): 20.25 °C (68.44 °F)			
7.1.1.6	Measured Warm Side Surface Conductance (hh):	7.59 W/(m²C	c) (1.34 BTU/(hrft²°F),)
7.1.1.7	Measured Weather Side Surface Conductance (hc):	29.28 W/(m²	² C) (5.16 BTU/(hrft ² °F	-))
7.1.1.8	Test Specimen Thermal Conductance (C _s):	2.96 W/(m²C	C)(0.52 BTU/(hrft²°F))	
7.1.1.9	Convection Coefficient (K):	2,04	W/(m2C1,25)	(0,31)
		BTU/(hrft2°F	⁼ 1,25)	
7.1.1.10	Radiative Test Specimen Heat Flow (Q _{r1}):	72.05 W (24	6.08 BTU/hr)	
7.1.1.11	Conductive Test Specimen Heat Flow (Qc1):	66.51 W (22	7.13 BTU/hr)	
7.1.1.12	Radiative Heat Flux of Test Specimen (qr1):	40.03 W/m²	(12.70 BTU/(hr ft²))	
7.1.1.13	Convective Heat Flux of Test Specimen (qc1):	36.95 W/m²	(11.72BTU/(hr ft²))	
7.1.1.14	Standardized Warm Side Surface Conductance (hsth):	6.95 W/(m²C	c) (1.22 BTU/(hrft²°F))
7.1.1.15	Standardized Cold Side Surface Conductance (hstc):	30,00 W/(m²	² C) (5,28 BTU/(hrft ² °F	-))
7.1.1.16	Standardized Thermal Transmittance (Ust) 1:	1.94 ± 0.0 BTU/(hrft²°F	8 W/(m²C) (0.34))	± 0.01
7.1.2 T	est Duration			
7.1.2.1	The environmental systems were started on:	2017-12-14	at 08:22 AM	
7.1.2.2	The test parameters were considered stable for two consecutive two hours test periods on:	2017-12-15	from 02:22 AM to 06	:17 AM
7.1.2.3	The thermal performance test results were derived from:	2017-12-15	from 04:22 AM to 06	:17 AM

¹ Uncertainty: 95% confidence interval

8 GENERAL COMMENTS

None

9 CONCLUSION

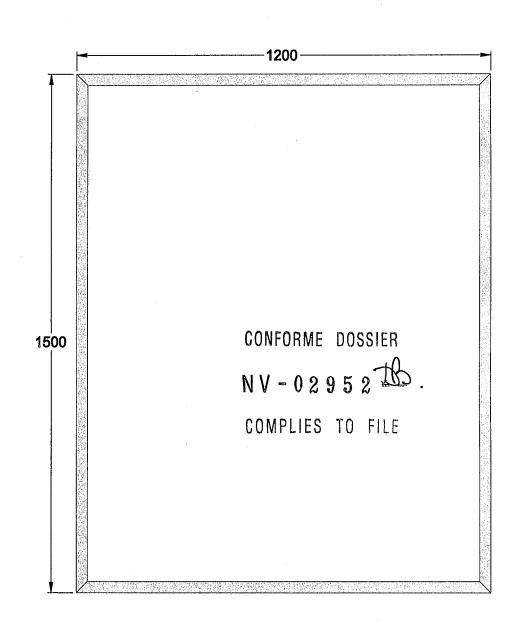
This test method does not include procedures to determine the heat flow due to either air movement through the specimen or solar radiation effects. As a consequence, the thermal transmittance results obtained do not reflect performances which may be expected from field installations due to not accounting for solar radiation, air leakage effects, and the thermal bridge effects that may occur due to the specific design and construction of the fenestration system opening. Therefore, it should be recognized that the thermal transmittance results obtained from this test method are for ideal laboratory conditions and should only be used for fenestration product comparisons and as input to thermal performance analyses which also include solar, air leakage, and thermal bridge effects.

Detailed drawings were available for laboratory records and compared to the test specimen at the time of this report, representative sections of the test specimen will be retained by CLEB laboratory Inc. for a period of 2 1/2 years and report will be retained by CLEB laboratory Inc. for a period of 5 years. The results obtained apply only to the specimen tested. Testing described in this report was conducted in full compliance with NFRC requirements.

Appendix A of this report includes drawings and information of the product.

10 REVISION LOG

Revision Number Revision Date Description


APPENDIX A - DRAWINGS AND PRODUCT INFORMATIONS

Test Report No: NV-02952, Re-issued Report No: N/A

Validation Test in Accordance with NFRC 102-2017

The results in this report relate only to the items tested. This report shall not be reproduced except in full, without the written approval of CLEB laboratory Inc.

AVA!	Way Code Code	Description	Material
1	450-107	Frame profile	5.4m
2	540-773	Bead profile	5.2m
3	EA450-362	Joint corner for frame	4pcs
4	EA450-361	Joint corner for frame	4pcs
5	EA450-875	Vulcanized epdm corner for central gasket	4pcs
6	EA410-874B	Vulcanized epdm corner for frame gasket	4pcs
7	US530-3PRM	Glazing gasket	5.4m
8	EA570-448M	External epdm glazing gasket	5.4m
9	EA450-411M	Epdm central gasket	5.4m
10	EA450-388M	Insulation Bars Neocoat EPS (λ=0,03 W/m x K)	5.4m
11	E2900-585M	Foam Insulation 35x10mm (λ=0,038 W/m x K)	5.4m
12	E2900-586M	Foam Insulation 19x5mm (λ=0,038 W/m x K)	5.4m

SSORIES	Code:	Description	CRIMPING CORNER 19.4 x 18.6 mm (SIEGENIA)
10.00	EA450-361U		
18.6	Code: EA450-362U	Description	CRIMPING CORNER 8.9 x 18.6 mm
	Code: EA450-875M	Description	VULCANIZED EPDM CORNER FOR CENTRAL GASKET EA450-411M
	Code: EA410-874B	Description	VULCANIZED EPDM CORNER FOR FRAME GASKET EA410-408M
16.8	Code: US530-4PRM (4mm)	Description	GLAZING GASKET NV - 02952 COMPLIES TO FILE
18.8	Code: EA450-411M	Description	EPDM CENTRAL GASKET
36	^{Code:} EA570-448M	Description	EPDM GLAZING GASKET
22 23	Code: EA450-388M	Description	Insulation Bars Neocoat EPS (λ=0,03 W/m x K)

ACC	5.6 25.9 25.9 2j	Code: E2900-585	Description: FOAM INSULATION 35x10mm (λ=0,038 W/m x K)
	5 	^{Code:} E2900-586	Description: FOAM INSULATION 19x5mm (λ=0,038 W/m x K)

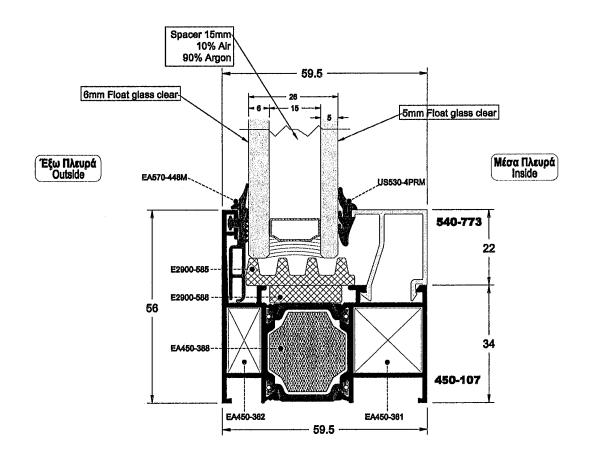

CONFORME DOSSIER

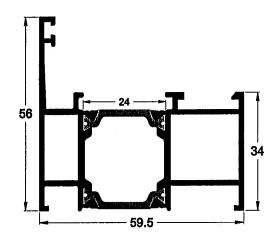
NV-02952

COMPLIES TO FILE

FIX WINDOW

OWH FRONT VIEW

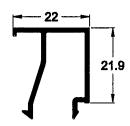

KATOWH TOP VIEW


CONFORME DOSSIER

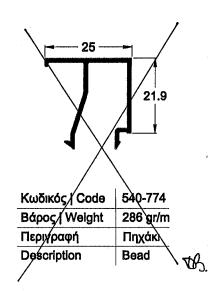
NV-02952 TB.

COMPLIES TO FILE

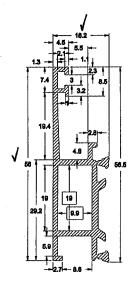
FIX WINDOW

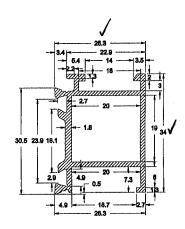


Κωδικός Code	450-107
Βάρος Weight	1197 gr/m
Περιγραφή	Κάσα
Description	Frame


CONFORME DOSSIER

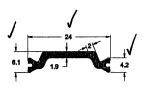
NV - 02 9 5 2 2.


COMPLIES TO FILE


Κωδικός Code	540-773
Βάρος Weight	275 gr/m
Περιγραφή	Πηχάκι
Description	Bead

CASEMENT WINDOW

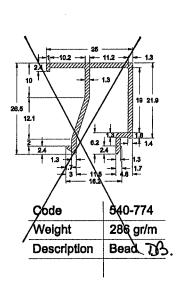
Code	450-1K7
Weight	545 gr/m
Description	Frame



Code	450-1B1
Weight	512 gr/m
Description	Frame

CONFORME DOSSIER

NV - 02952 TD.


COMPLIES TO FILE

Code	3120-024
Weight	70 gr/m
Description	Polyamide
•	

√ 	
1-1-72 H H- 112	1.3
10 1.3	1.3 19 21.9 1 1.4 3

Code	540-773
Weight	275 gr/m
Description	Bead

Material Data sheets

Insulating Profiles made of PA 66 GF 25 / Recycled PA 66 GF25 - dry impact resistant

No.	Characteristic	Reference standard	Unit	Samples prepared from extruded insulating strips _{Dry⁽¹⁾ Equilibrium⁽²⁾ moisture content}		Injected-moulded samples Dry ⁿ	
1	Melting temperature	EN ISO 11357-3	°C	min. 250 ⁽³⁾	min. 250 ⁽³⁾	min. 250 ⁽³⁾	
2	Density	EN ISO 1183-1 or -3	g/cm³	1.3 */0.05	1.3 */- 0.05	1.3.1/- 0.05	
3	Annealing residue (glass fibre content)	EN ISO 1172	%	25 +/- 2.5	25 +/- 2.5	25 +/- 2.5	
4.	Shore hardness D	EN ISO 868		82.*/-4. ⁽⁴⁾	78 t/- 4 ⁽⁴⁾	84 1/-2	
5	Impact strength	EN ISO 179-1	kJ/m²	min. 30 or without break ⁽⁵⁾	min. 40 or without break ⁽⁵⁾	min. 35 ⁽⁶⁾	
6	Tensile strength	EN ISO 527-2 and -4	N/mm²	min: 80 ⁽⁷⁾	min, 50 ^{p)}	min.110 ⁽⁸⁾	
7	Young's modulus	EN ISO 527-2 and -4	N/mm²	min. 4500 ⁽⁷⁾	min. 2000 ⁽⁷⁾	min. 6000 ⁽⁸⁾	
8	Elongation at break	EN ISO 527-2 and -4	%	min, 3 ⁽⁷⁾	min. 7 ^{(h}	min. 3 ^(a)	
(1) Sample water content less than 0.2 % by weight (2) Fast conditioning acc. to EN ISO 1110 (23°C/50%) (3) Maximum temperature 300°C (4) Specimen thickness 2mm, unstacked (5) Specimen Typ 2fU (50 mm x 10 mm x 2mm) (6) Specimen Typ 1fU (80 mm x 10 mm x 4mm) (7) Specimen Typ 1BA (8) Specimen Typ 1A							

Insulating strips of Low Lambda PA 66 GF25 - dry impact resistant

No.	Characteristic	Reference standard	Unit	Samples prepar insulati Dry ⁿ	ed from extruded ng strips Equilibrium ⁽²⁾ moisture content	
1	Melting temperature	EN ISO 11357-3	°C	min. 250 ⁽³⁾	min. 250 ⁽³⁾	
2	Density	EN ISO 1183-1 or -3	~g/cm³	1.0 1/- 0.1	1.0 +/= 0.1	
3	Annealing residue (glass fibre content)	EN ISO 1172	%	25 +/- 2.5	25 +/- 2.5	
4	Shore hardness D	EN ISO 868		77.1/-4.(4)	67 */ 4 ⁽⁴⁾	
5	Impact strength	EN ISO 179-1	kJ/m²	min. 20 ⁽⁵⁾	min. 30 ⁽⁵⁾	CONFORME DOSSIER
6.	Tensile strength	EN ISO 527-2 and -4	N/mm²	min: 50 ^(g)	min: 35 ^{le)}	NV-02952 D
7	Young's modulus	EN ISO 527-2 and -4	N/mm²	min. 2900 ⁽⁵⁾	min. 1300 ⁽⁶⁾	COMPLIES TO FILE
В	Elongation at break	EN ISO 527-2 and -4	%	min. 5 ⁽⁶⁾	min 8 ⁽⁶⁾	÷

¹⁾ Sample water content less than 0,2% by weight 2) Fast conditioning acc. to EN ISO 1110 (23°C / 50%) 3) Maximum temperature 300°C

⁴⁾ Specimen thickness 2mm, unstacked 5) Specimen Typ 2fU (50 mm x 10 mm x 2mm) 6) Specimen Typ 1BA

Product code

69 / 38 / 1,0

total thickness = 26 mm

Glazing from external to internal:

Pane 1

6 mm

Float Glass ExtraClear

SunGuard SN 70/37 HT

Spacer 1 - 15 mm

10% 90% Air

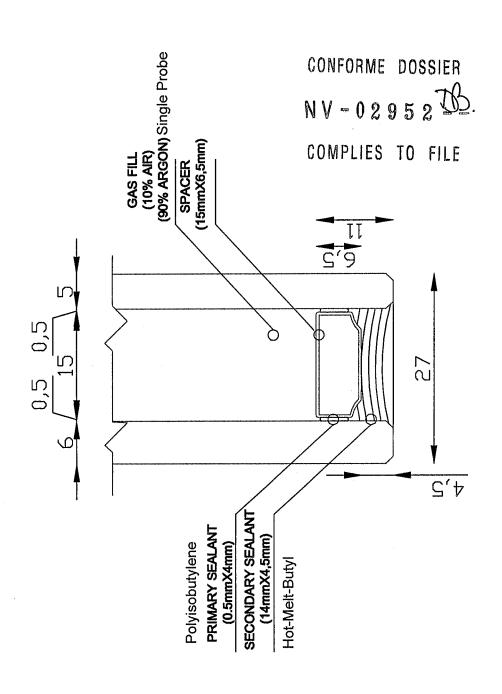
Argon

Pane 2

5 mm

Float Glass Clear Guardian

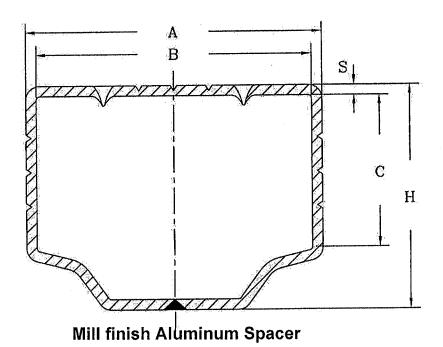
Results


Visible light (EN 410 - 2011)	Solar energy (EN 410 - 2011)
stransmittance [%]	solar factor [%] solar factor [%]
reflectance external [%] $\rho_v = 12,3$	shading coefficient [g/0.87] sc = 0,44
reflectancelInternal [%]	AT AND A PROPERTY OF THE PROPE
general colour rendering index [%] R _a = 93,5	direct reflectance external [%] $\rho_e = 35.3$
	∦direct reflectance internal [%]
Thermal properties (EN 673 - 2011)	direct absorption [%] a = 29,6
.U-válue((W/(m²K))	AMERICAN AND ADDRESS OF THE PROPERTY OF THE PR
slope $\alpha = 90^{\circ}$	secondary internal heat transfer factor [%] $q_i = 2.9$
	Other data 659
	estimated sound reduction index [dB] $R_w = NPD$
	(EN.7:17-1) C = NPD
	$C_{tr} = NPD$

CONFORME DOSSIER

NV-02952 TB.

COMPLIES TO FILE


The calculated values are for orientation only and do not offer any guarantee regarding the fabrication of the un-intended end-product. Glass configurations do not amount to a guarantee of product availability.

Rev. 17 del 10.06.2013

PNAAAHHGSSSN

Profilglass

K/140-		-
Γ	~	
-	\ ~	. "

RIFERIMENTI	Α	Н	S	В	С
TOLLERANZE	+ 0.05	+ 0.01		. 0 00	+ 0.20
SIGLA (Profilo)	- 0.15	± 0.10	- 0.03	± 0.20	- 0.10
P. 5.5 S.L.	5.60	6.55	0.36	4.70	4.20
P. 6.5	6.50	6.50	0.36	5.70	4.20
P. 7.5	7.50	6.50	0.36	6.70	4.20
P. 8.5	8.45	6.50	0.36	7.65	4.20
P. 9.5	9.45	6.50	0.36	8.65	4.20
P. 10.5	10.45	6.50	0.36	9.65	4.20
P. 11.5	11.45	6.50	0.36	10.65	4.20
P. 12.5	12.45	6.50	0.36	11.65	4.20
P. 13.5	13.45	6.50	0.36	12.65	4.20
P. 14.5	14.45	6.50	0.36	13.65	4.20
P. 15.5	15.45	6.50	0.36	14.65	4.20
P. 17.5	17.45	6.50	0.36	16.65	4.20
P. 18.5	18.45	6.50	0.36	17.65	4.05
P. 19.5	19.45	6.50	0.36	18.65	4.20
P. 21.5	21.45	6.50	0.36	20.65	4.05
P. 23.5	23.45	6.50	0.36	22.65	4.05
P. 26.5	26.45	6.50	0.36	25.65	4.05

CONFORME DOSSIER

NV - 02952 Tb.

COMPLIES TO FILE

NOTE:

- A) Sulla lunghezza si considera una tolleranza di ± 3 mm
- B) Per i profili verniciati, le misure esterne sono maggiorate di una quota variabile tra 12 e 20 μ